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Abstract

Network intrusions leverage vulnerable hosts as steppomes to penetrate deeper
into a network and mask malicious actions from detections Tésearch focuses on a
novel active watermark technique using Discrete Wavelah3iormations to mark and
detect interactive network sessions. This technique isisles nearly invisible and
resilient to multi-flow attacks. The watermark is simulatesihg extracted timestamps
from the CAIDA 2009 dataset and replicated in a live environtme

The simulation results demonstrate that the techniqueratmdy detects the presence
of a watermark at a 5% False Positive and False Negativeornt®th the extracted
timestamps as well as the empirical tcplib distributione Thatermark extraction accuracy
is approximately 92%.

The live experiment is implemented using the Amazon Ela&timpute Cloud (EC2)
service. The client system sends marked and unmarked gdoswet California to
Virginia using stepping stones in Tokyo, Ireland and Oredéwe trials are conducted in
which the system sends three simultaneous watermarkedessiamm one unmarked
sample 100 times to each target. The live experiment reardtsimilar to the simulation
and provide statistical evidence demonstrating thecéiveness in a live environment to

identify stepping stones.
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Scalable Wavelet-based Active Network Stepping Stone Detection

1 Introduction and Motivation

1.1 Background

Presently, malicious users are a serious problem in the atingpindustry. Computer
and network attacks (i.e., data exfiltration and botnetajinae to grow at an alarming
rate. Intrusion detection is a diverse area of interestdedumainly on preventing these
attacks. ldentifying the origin of the attacks and mapphgroute is important to prevent
future attempts. A 2008 report shows that most of the att&ekgpts on US computers
originated in the US as shown in Figure 1.1 [17]. As stated bgaurity researcher at

Secureworks,

"We believe these statistics are significant because itlglehows that
the United States and China have a lot of vulnerable comptitatfhiave been

compromised and are being used as bots to launch cyberattack

One important element is detecting compgiEpping stonedA stepping stone is a
computer that is actively used as a hop point, normally e#he targeted network. It
communicates with external and internal computers usirdirbctional network streams.
Indeed, stepping stone detection is important becausedheious actors circumvent
many of the security measures (e.g., firewalls or other né&tWwarriers). By having full
access to a single host, the malicious actions appear éislats trdfic and is dificult to
detect.

Recent work by Houmansadr shows that watermarking intekgialelays in packet

streams is one of the most powerful tools in detecting stepgiones [10] [8]. The
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Figure 1.1: 2008 origins of US cyber attack attempts by aguif7]

watermark serves as a recognizable pattern that serves askegifor the network
stepping stones. The Scalable Watermark that is InvisitdeResilient to Packet
Losses (SWIRL) system watermarks the inter-packet delaystextithe network streams.
This active technique adjusts the packet delays so that fesakets are required for
detection and is generally more accurate than relatedveatesinniques. The general
system model in Figure 1.2 shows the network components khasvhe watermarker
and detector. Placed on the edge of the network, the watkemianodifies the packet
timing as they enter or leave the network boundary. If ondefrtetwork computers is
used as a stepping stone, a detector placed inside the Retarmdetect the watermarked
stream from the internal network.

Previously captured streams of SSHiii@and empirical distributions included in the

tcplib library builds the model of typical stepping stoneffia Consistent with related



research for stepping stone detection, passive data tadleéy the Cooperative
Association for Internet Data Analysis (CAIDA) project fosrthe main resource for

previously captured SSH streams.

Border Router

Watermarker

Tier 1 Servers

Network Hosts

Figure 1.2: System Block Diagram

It is important to note that stepping stone detection teqes must be robust against
attackers attempting to subvert detection. Attackers haging as well as introduce

random jitter into the packet streams to circumvent detactindeed, the technique must



be dfficult for an attacker to detect and resilient against watgtmeamoval. The
watermark must be invisible so that it igiiltult for an attacker to determine if the stream
is indeed watermarked. The proposed technique presentsshmethod of the stepping

stone detection and presents the results of the simulatidiivae experiment.

1.2 Problem Definition and Goal

This research introduces a novel algorithm for detectirtgyork stepping stones.
The algorithm uses a semi-blind active watermarking temmmthat modifies the
inter-packet delays in a way that is nearly invisible (itke presence of a watermark is not
apparent to the attacker). The goal is to demonstif@etaveness of identifying network
stepping stones using this technique. In addition, theegyshust scale to facilitate
integration in larger network environments. The final gsgliedictable error and

detection rates that are comparable to previous research.

1.3 Approach

The technique is developed based on the statistics of ¢gtréaces from the
CAIDA 2009 dataset. Next, the procedure is simulated anéddstcompare performance
from previous research and accepted statistical distoibsit Once the algorithm is refined
and evaluated, a live system using stepping stones is inguitsd that tests the
performance in a real-world environment. A comparison leetwthe simulation and the

live experiment demonstrates the performance dfet®veness of this novel technique.

1.4 Research Contributions

This research serves to introduce and evaluate a techrugletect stepping stones in
a network. If applied in a real-world environment, this gystcan assist network security
personnel in identifying malicious network streams, cottib@ botnets and preventing

data exfiltration.



1.5 Assumptions and Limitations

The main assumptions and limitations in this research evtiiree areas. The first
involves the limitation that the extracted timestamps ftbe CAIDA 2009 SSH ports do
not contain payload information and therefore are not guesd to be interactive
sessions. These extracted timestamps are assumed to I r@pedsentation of typical
interactive sessions.

The second area involves the selection of stepping stomésd@xperiment. A true
valid sampling requires a random selection of true netwtgg@ng stones from the
complete population. Because this is not feasible, the siggbones selected in the
experimental phase represent hosts that exhibit similaracheristics to likely stepping
stones. It is assumed in this research that the results mextbeded to a larger scale
based on the fact that the selected stepping stones arelaaaiple of the available
stepping stones.

Lastly, because this research focuses on interactiveistgpfpnes, the algorithm
performance decreases when the type dfitrés changed. The performance specifically
deteriorates during high rates offiiita as well as constant rate fii@. Although the
algorithm could be adapted to these distributions, thisaesh focuses mainly on the
distribution associated with human driven interactivesg®ss. As a result, automated
sessions are not within the scope of this research, howéeetseto extend this technique

may focus on applying the wavelet technique to these session

1.6 Thesis Organization

This thesis presents the research in a manner typical ofiexgetal research. First,
the background addresses previous research relatingstbetu. Next, the experimental
methodology and the analysis are presented. Conclusidow/fthie results addressing the

impacts of the research and discusses future work. The dp@sinclude a discussion on



the development of the client and server programs as welliasSray of rejected CAIDA

datasets.



2 History and Background

This chapter introduces many of the techniques evaluatpcewious related
research. Stepping stone detection traces back appre@tintah years ago in 1995 when
Staniford-Chen and Heberlein recognized the problem anglgsexd an initial solution
[20]. Since then, attackers progressed in complexity ntaktie detection of stepping
stones more diicult. As the attackers’ techniques became more advancdddk their
actions, the detection methods also became more complebajii to these changes.
Advantages and disadvantages of previous techniquessamasged in this chapter to set
the stage for the proposed technique for stepping stonetaete

First, the importance of detecting the stepping stonessisudised followed by a brief
discussion of malicious and legitimate uses of steppingestoNext, a classification of the
current detection techniques are presented as passivetirelraethods along with blind
and non-blind detection. Finally, a summary of the histargt previous research is

presented.

2.1 Why Stepping Stones are Important

2.1.1 Evolution of Stepping Stoned he problem of intruders gaining access to
computer systems through the network traces back many gadrsontinually presents a
difficult problem in today’s growing networks. In 1995, Stanif@hen and Heberlein
introduced the problem of tracing an intruder back throughain of multiple machines.
These chains are often referred to as stepping stones agatidgtthem is commonly
known as Stepping Stone Detection (SSD) [20]. The chainggeanonymity to the
attacker so that tracing the original source of an attackagerdfficult. Because an
attacker may have access to only one host due to securitywonerestrictions, using a
stepping stone allows the attacker to extend the reach @fttaek using this one

compromised machine.



Fifteen years later this same problem still exists and asahgplexity of the attacker
increases, this problem is moretttult to solve. Data streams are more complex due to
the use of encryption, data padding or filrey and timing perturbations. The encryption
schemes hides the contents of the data from both eavesdgoppsnifing. In many cases,
even the victim stepping stone cannot read the data althbtiglverses the link. Data
padding or chfiing involves the attacker inserting extra data into the uskfta stream.
Chdting is a practice in cryptography that adds packets of datafiear legitimate but
are only discernible to the receiver with the correct keye Thdfing process is commonly
used to maintain confidentiality without actually encrygtihe data, but requires
significant overhead to mask the original contents of tha.ddécause many applications
can be identified by the inter-arrival time of the packetg.(eost Voice over Internet
Protocol (MolP) calls), the actual packet times may be ddgliso that they cannot be
easily classified. The attacker manipulates these timingmEtions to mask the actual
delay of the packets. These common techniques used by etsatiake the classification
of the packet streams at the stepping stones mdieult to detect, though not impossible.

The importance of stepping stone research is demonstragal/ernment proposals.
An Air Force solicitation explicitly requests researchdemtifying stepping stones to
enable traceback [3]. Figure 2.1 illustrates an exampleast@from the solicitation in
which the attacker uses stepping stones to conceal itslactge and make the traceback

more dificult.

Complex bot networks (botnets) and compromised serverane examples of
present day attacks that commonly use stepping stonese Elegsping stones serve as a
relay point so that the attacker can disguise their trackseaoetrate deeper into a network.
The botnets normally contain an overlay network for commamd control which is

disguised by the use of stepping stones.
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Figure 2.1: Example of an attacker using stepping stonesrioeal original location [3]

2.1.2 Botnets.

2.1.2.1 Botnet Overview.A great deal of current security research focuses on
analyzing and categorizing botnets. While this researclk doespecifically serve this
purpose, a brief description of a botnet is included as itiapppo the importance of the
stepping stone. The botnet is generally characterized log,albotmaster, and the
command and control (C2) server. The bot is often the victimma-user machine
running the bot software to communicate with the C2 servene@ly, the bot receives
commands issued remotely by the botmaster or botherdeenQfte commands between
the botmaster and the C2 server as well as the between the @2 aadsthe bot are not
relayed directly. Instead, stepping stones are often usathsk the origin of the C2

network. The most popular example of the stepping stonetimdi®is the Internet Relay



Chat (IRC) server. In this scenario, the IRC server relays cordmbatween the C2 host
and the bots.

While the botnet software is not always malicious, the majaf security research
involves preventing unknown malicious bots. Several ottarestics make detecting these
unknown bots dficult. First, the communication in the botnet may lie dormfaniong
periods of time awaiting commands. Also, botnets may beldiyiinto smaller sections
controlled by networks of C2 servers. The C2 server may ditesntyatime the bots to
migrate between servers and divertiiato different machines. Lastly, some machines
may serve multiple botnets, creating a situation in whieghamount of infected hosts
appears to exceed the number of physical infected hostewlisk, if the C2 server only
directs certain nodes to respond, the corollary may exisresthe amount of infected
hosts is vastly underestimated [11].

In some cases, the commands sent to the bot may not be alded¢ost the
endpoints in the original network configuration. In this&astepping stones are used to
gain access to a network and broaden the depth of the botn@yeSidentifies these
intermediate hosts asndezvous-poin@nd states that they may be hierarchical to support
scalability in the botnet [23]. Flow analysis assists imitifging botnet trdfic not
originally observed. While the flow correlation does not resegily mean a botnet is

present, it doesfter a more focusedi®rt on likely targets.

2.1.3 Compromised Hosts and Stepping StonBgsides command and control for
botnets, attackers may simply use a compromised host apargjestone to obfuscate the
origin or penetrate deeper into an internal network. Asc&datechniques become more
advanced, the scenarios typically include more steps. fEmelard Intrusion Detection
Systems (IDSs) havefliiculty identifying these multi-faceted attacks. Indeed$SID
enhancements include a new modeling language introducsmhtbat the complex

scenarios [1].

10



Larger organizations in particular are common targetstiEp@ng stone attacks.
While the majority of networks are behind security deviceg.(direwalls or
Demilitarized Zones (DMZs)), even the compromise of ong¢esyscan be used as a
stepping stone to reach the rest of the computers on the retd@eport on network
security lists these stepping stone threats as one of thepraisable avenues of attack for
external facing devices [18]. These threats for embeddede®may be greater due to
the dificulty in securing such devices. In fact, one resource indgthe possibility of
using an embedded web server inside a picture frame as argiegtpne to access the

entire company intranet [6].

2.1.4 Legitimate Stepping Stonedot all traffic characterized as stepping stone
traffic is malicious (e.g., VoIP tfic or automated polling systems). Even using
decentralized peer-to-peer methodology to send thisdmraay appear as stepping stones.
Other uses for stepping stones are cases in which admtnistianly allow access to
certain computers through gateways. In many cases the gat@vforms like a legitimate
stepping stone or hop point. Policy based decisions muste®mployed in the SSD to
ensure that legitimate stepping stondficas filtered from possible malicious tie.
However, the policy based decision must be made carefutiglse the malicious tfigc
may indeed closely resemble the legitimatética

Previous research shows that VolHiiacan be detected using stepping stone
detectors even when using anonymizing services. The detgcturately detects VoIP
traffic streams and identifies the endpoints by manipulating tlasy deetween packets
[26]. This research carefully modifies the delay so that tidpeints could be detected
while not adverselyféecting the voice quality. The research demonstrates tbppstg
stone detection can be extended to identify endpoints dioaized trdtic. Although the
VoIP traffic was authorized on the network, they were able to deterrhmendpoints of

the conversation.
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2.1.5 |Interactive Session ModeldMuch of the stepping stone research
concentrates on identifying and modeling interactiveisassbased on human
interactions. Initial research modeled the inter-arrbetlveen packets as a Poisson
distribution. While this distribution was the basis for mamars, other distributions (e.g.,
the empiricakcplib distribution and the Pareto distribution) have proven nameurate in
modeling human-driven sessions [16].

In addition to the inter-packet delays, the stepping stesearch must consider other
variables in the network such as jitter. A study on wide-sddAN networks using the
PlanetLab overlay network concludes that the maximunt jistapproximately normally
distributed with a zero mean and a maximum standard dewiafi®& ms [14]. Additional

research observes the standard deviation of the jitterdst\8.2 to 12 ms [8].

2.2 Initial Detection and Classification

The initial paper by Staniford-Chen introduced the concépising a series of
computers to relay tfac [20]. By successfully logging on to each computer using a
UNIX terminal, this theory established a connection to thépint via intermediate
computers as stepping stones. The importance was illadtstthe increasing number of
intrusion attempts, as far back as 1995. Research by Stdsfoen relies on thumb
printing the connections to identify the packet streams fHumb print simply compares
the data payload on either side of the host to correlate ttveonke flows. This is easily
circumvented using encryption or other data disguisingrieque. The concept was
extended by Zhang and Paxson where they first named the keftepping stone. This
work also set the stage for more robust detection methodsagcluding active
detections [32].

The SSDs are categorized according to technique and locdtie techniques are
passive and active methods and the location of the SSD isdasstd or network-based.

Table 2.1 shows various SSD techniques [28]. Similar tordtbst-based models, these
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detection methods require sensors or adjustments madehainebividual host, whereas
network-based detection models take place f@¢dint points along the network path. The
passive detection methods do not modify or alter the paoketreas the active-based

detection works primarily by altering the packet timing ayppad.

Table 2.1: Classification of Existing Stepping Stone Detecliechniques

Passive Active

Host-based DIDS, CIS Caller ID

Thumb printing IDIP
Timing-Based CITRA
Network-based Deviation-Based SWT
Online Sketching RAINBOW
SWIRL

2.3 Passive Detection

In the passive SSDs, the networkfirais classified without modification. The
obvious advantage is that the attacker can not determihe di¢tection is taking place.
Acting much like a srffer it performs operations in a covert manner because theonletw
traffic is not modified. The passive detection can be further sudetivnto host-based and

network-based passive detection.

2.3.1 Host-based Passive Detectiofhe two main examples of host-based
passive detection are the Distributed Intrusion Deteclgstem (DIDS) and the Caller
Identification System (CIS). DIDS is an early system devaidpgethe University of
California at Davis to trace events as they progressed thrthgnetwork [19]. It uses

event monitors and triggers to correlate network actiatyhie user involved. As an
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example, if a user “smith” logs on to another machine usingesgaccount, the
host-based event generator triggers the Local Area Net(l@xkl) monitor about the new
connection. From there, if the user “smith” executes a ngtwoan using the guest
account, the monitor could trace the logon attempt backdager “smith” on the original
machine. A server maintains the full login chain to traceko@mmmunications to the
original user.

The CIS also uses the host-based detection approach butstriawted manner [12].
Instead of a centralized server managing all of the conmestiates, when a host on
machinen attempts to connect to another host, it presents the cdogintchain ofn
hosts for verification. The host at ¢ 1) then verifies the presented chain from computer
1 ton. The new connection is only authorized to login when thercihafully verified.

The new host is then added to the login chain for future catimrex. This process
introduces additional overhead to the login process bus doerequire the central server

to manage the state of the connections.

2.3.2 Network-based Passive DetectioAlthough the network-based passive
detection shows promise in many areas, it does not showfisigmi improvement over
using standard passive intrusion detection methods. Mathedechniques and
procedures are similar in that most use some form of stzdigtrocessing to match
existing data (e.g., Bayesian detection or correlationg figtwork-based passive
detection methods include thumb printing, timing-based deviation-based. One of the
main drawbacks of the network-based approach is that it trusttthe sensors to provide
correct data. Most of the schemes presented for both activ@assive network-based
detection rely on the fact that the sensor is not compromigesh verifying the integrity
of the data.

The thumb printing detection method first described by [{ axtended in [20]

describes a method in which the packet is assigned to a “thprmti at a central server
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based on the packet payload. This thumb print is analyzed¢amdlated with other
thumb prints to determine which connections are incomirdyarigoing on a host. If the
thumb print matches both connections, then that host caddified as a stepping stone
for that data stream. This relies on simple communicatidwéen hosts and is easily
defeated using encryption or dhipackets.

The timing-based detection methods enhances SSD and deateasfectiveness at
detecting stepping stones, even iffi@is encrypted. The packet inter-arrival times are
analyzed using network devices and correlated to deterwimeh packets matched both
incoming and outgoing streams [32]. Similar to the thumingomg, the timing-based
detection methods are based on correlation, but do not refgesimilarity of the
incoming and outgoing data to create a match.

Work by Donoho and Paxson identifies three key charactesistidetecting stepping
stones [5]. First, they show that random swaps of inter-pad&lays within a given time
window provide a statistically provable method of correlgtinput and output streams.
Their technique selects a given time window and randombraftanges the inter-packet
delays, retaining the underlying distribution. They alsondnstrate that this technique is
non-causal. Second, this seminal work demonstrates ayptlye Discrete Wavelet
Transform (DWT) on vectors of inter-packet delays. The systerrelates the network
streams using the DWT cfigients to identify the stepping stones. This research
analytically demonstrates th&ectiveness using the Poisson distribution to model the
inter-arrival times. As previously mentioned, the digitibns for interactive sessions are
not well modeled by the Poisson distribution; however, ttlaym the results should be
similar using the Pareto acplib distributions. The simulation using the empiriégplib
distribution shows promising results using the DWT corielabf codtficients. Lastly,
they show that these techniques may be resilient to andippssien detect the presence

of chdf packets.
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Deviation based SSD operate similarly by analyzing the mumn average delay gap
between the packet streams of two Transmission Control E&sb§@CP) connections. The
deviation uses both the packet timing as well as the TCP sequarimber. Note that the
TCP payload is not considered in the calculation. One obuwilbawback of the
deviation-based SSD is that it is only valid for TCP connewidOther reasons for the
deviation-based approach failures were caused by Unixdoes tréfic that replicated
stepping stones as well as connections with very largedaenin the case of the Unix
broadcast applications, the correlatedficamatches two flows from one distinct source
(e.g., fromh; — h, andh; — hg). This could be easily sorted out since it does not
conform to a stepping stone which wouldme— h, — hs. In the latter case, if a user
logged on to a system from a foreign country and then retuanszhnection back to the
country, the algorithm had fliculty detecting the stepping stone due to the large latency
[30].

One of the latest approaches involves a technique calledd®8ketching as
described in [2]. Online sketching uses an algorithm to emarflows at the network
boundary to identify stepping stoneftia. Based on data sketches, which are widely used
in stream analysis, the algorithm maintains short sketohdata streams to identify the
stepping stones at the network boundaries. Through expatahverification of 100 SSH
flows, online sketching identifies 95% of the stepping stcata dtreams even with
additional perturbations, chgackets and background fiia in the data set. One main
advantage of this technique was that in traditional passiveslation analysi€Q(n x m)
calculations are required whemeandm are the ingress and egress data flows, respectively.
This process of online sketching only requi@ + +/n x m) calculations. The main
disadvantages of this approach is that to fieative against a certain flow, the parameters
must be selected very carefully. Because of this, it was rmisbagainst flows that

deviated from this original characteristic. In other wqiifishe parameters were chosen to
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identify a flow with approximately 2.5 packets per secondew flow that was 10 packets

per second may not be detected with the same accuracy.

2.4 Active Detection

The active detection methods for SSD require more sophtstit but dfer better
results in general when compared to the passive methodsu8zdaey are able to
manipulate the packets or data streams, they require codgsragrams to create the
desired &ect. This also means that they may introduce undesirdlgets (e.g., as added
packet delay or bottlenecks) depending on the network pegnce. While the
computational complexity may be reduced in the active dietecthe scalability may be

affected due to the network resources.

2.4.1 Host-based Active DetectiorCaller ID (not to be confused with CIS) is an
active detection method that was proposed by Staniford-@hdmeportedly used by the
Air Force [20]. It proposes that in order for an attacker te a<hain of stepping stones,
each link in the chain must contain a vulnerability. Simtaa “hack-back” approach, the
Caller ID system would attempt to gain access to each hostiohhin to identify the
path. Obvious legal and technical restrictions make this@gch somewhat unfeasible,
especially to identify an attacker in real-time. While armelkier can take months to
establish a series of stepping stones, the Caller ID appmagmot work in a timely

manner, if at all.

2.4.2 Network-based Active DetectiorAs the primary thrust of this research, it is
important to analyze the advantages and drawbacks of pagbrkebased active detection
techniques. Early thumb printing attempts led the way toaraalvanced timing-based as
well as deviation-based detectors able to identify stepptones, even when obfuscated

by encryption and clfing. The active detection led the way to activatermarksn order
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to reduce the computational complexity of the algorithmd iamprove detection rates.

The fundamental block diagram for network-based watermgris shown in Figure 1.2.

2.4.2.1 Active detection based on packet paylodthe Cooperative Intrusion
Traceback and Response Architecture (CITRA), based on thmakigtrusion
Identification and Isolation Protocol (IDIP) system, paes an infrastructure that enables
IDSs, firewalls, and other network components to cooperigtivace and block network
intrusions. The original IDIP design is a protocol for refoog intrusion-related events and
coordinating the attack traceback. Additionally, it alfer an automated response action
and reduces the network manager’s workload in the event aftaok. The CITRA system
extends this to multiple functional neighborhoods that ocamicate with each other to
correlate findings. Much of the analysis focuses on the defagainst a Distributed
Denial of Service (DDoS) attack, as the IDSs constantly argle information in order to
locate the attacker [21]. Although this approach does natifpdhe packets on the
network level, it is classified as an active approach becale information exchanged
between the IDSs. Wang also questions the ability of thenmeiate boundary controller
to identify an intrusion solely based on a hard-coded attidcription [28].

The Sleepy Watermark Tracing (SWT) approach is anothereangtwork-based

detection and tracing framework [29]. It is referred tcseepybecause it only is
triggered in the event of a detected intrusion. Once ansmdruis detected, it activates the
SWT to embed the watermark in the packets. The watermark igtadvnull string” that
is injected into the packet that appears null to the end usteapplication. In the case
of the telnet and rlogin applications, a virtual null strimgy consist of a series ofb”
characters. Guardian boundary devices correlate the SWiCooning and outgoing
packet streams. An important feature of this research isstbfonse of actual hardware to
the SWT. They showed that the SWT gateway latency overheadyi@pproximately 50

us. Although the SWT technique shows promising results, itéfféective if the stepping
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stone uses link-to-link encryption. It also requires tretlehost needs a single, trusted

guardian gateway to correlate the packet streams.

2.4.2.2 Active detection using timing informatiorModifying packet timings
is an active method in which the watermark information is edded in the packet timings
instead of the actual packet data. These techniques camtberfalassified as blind or
non-blind depending on the amount of information passedédat the watermarker and
the detector. In a blind system, the detector only has atoessecret key shared between
it and the watermarker. In a non-blind system, additionfarmation about the packet
stream is passed to the detector, typically through an bb&ond channel. Table 2.2

shows the classification of the current watermarking tesines as blind or non-blind.

Table 2.2: Classification of Active Watermark Stepping StDeg¢ection Techniques

Blind Non-Blind

SWT RAINBOW
ICBW | C-RAINBOW

SWIRL

Loosely based on the active SWT, Wang proposes actively yindithe packet
delays for the Interval Centroid Based Watermark (ICBW) techmigorder to correlate
the streams of tféic. Instead of embedding the marking in the stream data, this
framework adjusts the delay of the packets to encode thelated values in the delays.
This technique has better detection rates and less FatstvEs (FPs) than the passive
counterpart; however, the technique does not adequataly 7]. Later research shows
ICBW successfully traced active VoIP conversations througingmizing networks [25].
Additionally, researchers later demonstrate, howevat,dljusting the inter-packet delay

could be subverted using multi-flow attacks.
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Another similar approach is to manipulate the arrival tiraethe packets using
preselected time intervals. This Direct Sequence Spreadtfspn (DSSS) technique is
proposed to alleviate the problem of repacketization [29}{he case of SSH and other
applications, this is a naturaffect and poses a challenge to the detection of stepping
stones. Each flow is sliced into short fixed-length time wdés. The watermark is
embedded in these slices by manipulating the packet couimigdiine specific intervals.
The research shows that using synthetically-generatedt@8id flows with the empirical
tcplib distribution, it achieves 100% detection rates with undeFP rate.

Similar to the previously mentioned techniques, a proposalDSSS watermarking
process shows promising results by encoding a binary wardrof n bits in an interval of
lengthTs. Therefore, the packet length needs to be at le&stong in order to encode the
entire watermark. Both the watermarker and the detector agrse on the parameters for
the lengthT as well as the Pseudo Noise (PN) code. Tlés are based on a PN code
similar to the DSSS codes used in radio signal transmissidms allows the detector to
recover the watermark by applying a high-pass filter to tleeixed signal and
subsequently passing it through a de-spreading and low/fjias [31].

Although the packet inter-arrival modification techniqoedy share the key to the
detector, they are all vulnerable to multi-flow attacks ascdéed in [13]. In this attack on
the watermarking scheme, it is assumed that the attackeedjabntrol of the stepping
stone and can monitor the incoming and outgoing flows. If ipkgltexternal flows are
generated to this host, then the attacker can collect thediand recover the secret
watermark key. Indeed, such actions allow an attacker to téetect and remove the
watermark for ICBW and Interval Based Watermark (IBW) techniques

The Robust and Invisible Non-Blind Watermark (RAINBOW) detectsystem
Houmansadr proposes extends aspects of the SSD to be rgbusttgpacket losses [10].

It begins by storing the timing information for a specific flowa database where
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t'li = 1,...,n+ 1, and the superscriptrefers to the unmarked flow entering the
watermarker. Next, it delays the packet by a valyevith values of+a with equal
probability:

+a  w.p.
Wi = (2.1)

-a w.p.

NI

NI

The valuea represents the amount of watermarking and is chosen snmalbérthat it is
invisible to ordinary users and attackers. In order to detexwatermark in this non-blind
system, the detector has the timirigas well as the watermark componews The
detector then determines if a watermark is present basedchomaalized correlation
scheme. In typical connections such as SSH and any TCP coymeadt packets do not
have a corresponding egress packet due to repacketizatathey reasons (i.e., initial
SYN packets, RST packets and FIN packets). The RAINBOW systearporates
selective correlation to account for packet loss. Thiscéigle correlation adds an
additional matching step in order to find and remove packetisdo not have a
corresponding match in the other flow using sliding windodshough the RAINBOW
technique produces promising results, it lackency and is not scalable.

The original RAINBOW technique is further extended into the CHRBOW by
adding additional error correcting into the watermark J8ktead of using thaa bits for
the watermark, the C-RAINBOW uses Repeat-Accumulate (RA) cadespeat the
bits g times. This repetition provides error correction to acadannoisy networks and
better detector performance. This model also passes thiemiafion through a soft-limiter
block in order to remove excess noise from the system. The ONBBW is modeled
using MATLAB over 10000 samples and compared to the RAINBOWItesThe
simulation demonstrates that the detection rate incraaseg the sama, while the
number of FPs decrease. The C-RAINBOW also detects smallezs/afithe watermark

amplitude a, which is the “jitter” created by the watermarker.
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The SWIRL is an extension of the RAINBOW technique and is the firstlb
active-based network detection scheme that claims to hest@lgainst packet losses,
multi-flow attacks and is scalable [8]. The system seleat&giantervals of lengtil and
divides them inta subintervals. SWIRL then further subdivides each subintémtam
slots as noted in Figure 2.2. The permutatiért modifies the number of packets in each
slot according to the secret watermark key. A base intesvalso selected so that the
detector can identify the information. The selection of paeameters must be carefully
considered depending on theftracharacteristics. The crossover point between the FP
andFalse-Negative (FN) rates is calculated and sets thépdet for choosing the
parameters for SWIRL. The SWIRL is modeled using MATLAB and poesgly captured
traffic. In addition, live experiments over the PlanetLab infiacture test the
performance. Extracted packet timings from the CAIDA 200%uday dataset are the
basis for the SSH timings. The True-Positive (TP) and FPatieterates closely match
the theoretical values and demonstrate that the technigyemviable in a large scale

network.

Interval (T)

Subinterval (T/r)

Sot#| Of21 | 2| 3|0 12| 3

Slot (T/mr)

Figure 2.2: SWIRL Slot Numberingr{= 4,r = 2) [8]
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2.5 Other Detection Methods

2.5.1 Hybrid Detection. In other works, hybrid detections propose combining
active and passive techniques to form a more elaboratensystehe SSD [15]. One of
the hybrid approaches involve a system that integratesdselfased and network-based
detection in an intelligent system. The research propdsegshe idea was possible,
although no metrics or proofs are derived. It is mainly a tegoal design which in theory
could reduce the number of FPs and increases overall agoofréte SSD. The main
claim is that the trust problem in the host-based systenddoeilalleviated using the data
from the network-based system creating a more robust deneststem. No forts are
shown to prove howféective the hybrid model would be at improving the trust in the

host-based system.

2.5.2 Data Mining. Closely related to the passive correlation methods, there al
is research involving data mining of packet streams [23]niythe standard data mining
techniques on a known benign botnet, one report shows taditr i stage of filtering can
reduce the amount of non-important data streams by a fat8.deginning with
8,933,303 TCP flows, filters remove obvious packets such gs fde transfers and
reduce the amount of flows requiring correlation to 238,28#s is accomplished without
using port classifications so thatffiia masquerading on unexpected ports would still be
detected. In the next classifier stage, the remaining floaspassed through three
machine learning systems. Between the J48 decision treee [Bayes and Bayesian
Networks, the naive Bayes classifier performed best in teffrtteed=N rate and FP rate.
The average bytes per packet also have the highest disatomyrpower in detecting the
botnet trdfic. These two stages reduce the correlateffi¢reo approximately 48,000
packets from the original 8,933,303.

In the next stage, the correlation algorithm attempts tatifieflows as a part of a

stepping stone from the remaining packets. Instead of lzding the correlation value
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based on a computationally expensive algorithr®@f?) wheren is the number of active
flows, they use a new technique. While the correlation coutddemtify all of the known
botnet trdtic, the outliers are attributed to implementing the softwasee a virtual
machine. The research concludes that the virtual machish¢h@reduced calculations
offered by the new algorithmfi@cts the timing preventing the necessary correlation. In
the last automated stage, a topological analysis detemvhigh of the remaining flows
had common endpoints. Lastly, a manual analysis of the floust tve performed to
reveal the presence of the stepping stone.

Further research described in [22] expands the improvaeledion algorithm

expressing the following characteristics as a time series:
e Packet event times
e Packet inter-arrival times
e Inter-burst times
e Bytes per packet
e Cumulative bytes per packet
e Bytes per burst
e Periodic throughput samples

The new algorithm examines the characteristics vector i 8aw as a point im-space.
Using Euclidean distance of the points and the EstimategNed Moving

Average (EWMA) ¢ = 0.75) to calculate the moments as a running estimate, thesesul
are then correlated. Plotting the Probability Density Riamc(PDF) of the distances,
multiple spikes are seen corresponding to highly corrdlfitav pairs. In this example,

they correctly hypothesized that the C2 flows were the paitis eistances closest to 0.
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The topological analysis show all but one of the expecteddliova graphical format. The
only flow not detected is anfiesite host because the flow does not closely correlate to the
flows of the local bots. This demonstrates that the scheméestize at detecting local

bots, but it cannot correlate the fiiia to of-site hosts even if the C2 server was local.

2.6 Error Correction and Coding

The watermarks must be present even when there is noise stodidins of the
original data. Therefore, coding theory for error detettnd correction fber an
opportunity to increase the detection rate while maintajrihe same encoding and
decoding algorithms. As some of the SSD techniques use @roection and coding
schemes, these applications directly apply to the futund&one in this area. The RA
code is an example that is fairly low complexity and easy tovde Demonstrated in
1998, RA is a simple and low complexity code that provides goardormance using
Maximum-Likelihood (ML) decoding [4]. Although the compiiéy of the ML decoding
is prohibitively large, it is also shown that the “turbodikdecoding which approximates
the ML decoding also performs well. In the case of the RA codenformation block of
sizen, is first repeated times. Theg x na data is then scrambled by a permutation
function and encoded by a rate 1 accumulator. The RA codegdfe with a linear

encoding time, making the technique fast.

2.7 Evading Detection

Before describing the various attempts to identify stepgtoges, a discussion on the
various techniques attackers employ to evade steppingsiemecessary. Thefiirent
evasion techniques are important to understand as theicagnly impact the
development of the algorithms to identify the stepping st he properties of evasion
are also critical to understand thextiveness of the SSD techniques. Some of the more

obvious techniques are encrypting the data as well as sjgopdickets. While fairly trivial
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to implement, these do noffer much resilience against detection. More advanced
techniques include timing perturbation as well as packafticty. In timing perturbation,
the individual packet timing is adjusted so that the coti@tebetween the incoming and
outgoing stream is moreftiicult. Depending on the level of perturbation, this coriielat

is still possible using current SSDs. Packetfting is simple in design as shown in Figure
2.3(a), but not trivial to implement [5]. The changes presamevolution in the stepping
stone from being a simple pass thru device to a more actiee filtdeed, the method of

evading detection presents new challenges to the SSD pmoble
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Figure 2.3: Examples of Evading Detection

In addition to evading detection, the attacker may implenaetive techniques to

deceive the detector. Assuming the attacker controls #ppstg stone, there exists a
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possibility of modifying the network packets via a multisi@attack as shown in Figure
2.3(b). For example, if the attacker controld the stepptogesand establishes multiple
flows of trdfic into the host, then analysis of these flows could be perfdriiany
deviation is exhibited from the original titec patterns, then the attacker may assume the

presence of a watermark and can lead to the identificatiomeandval of the watermark.

2.8 Summary

The importance of detecting stepping stones, whether thekars use botnets or
simple SSH commands, is venyfiicult. However, detecting stepping stones in real time
is invaluable to a network defender responsible for pratga computer network. While
the passive based approaches show promise with less mtaakeas, the increased
complexity of the attacker coupled with the computatioesalources needed make these
methods inferior. Indeed, active based watermarking tect®s have provenfiective
given the ever increasing network and attacker complehitthe following chapters we
present a novel active techniquigestive at identifying interactive sessions used in

stepping stones.
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3 Methodology

The methodology in this research consists of three mairsstépst, timestamps are
extracted and analyzed from previously recorded netwonkesations from the CAIDA
2009 [24] dataset. Next, after the watermarking techniguieveloped and refined, it is
simulated using the previously captured CAIDA 2009 timegstant-inally, the timestamps
are used again to generate live watermarkeffi¢rasing stepping stones in the Amazon

EC2 environment.

3.1 Problem Definition

3.1.1 Goals and HypothesisThe main goal of this research is tiectively detect
network stepping stones by applying a novel semi-blindractiatermarking technique. A
subset of the goal is to better characterize typical stepgione network tiéc. The
system should be scalable with acceptable rates of datedtialso should not
significantly change the characteristics of the originatefarm.

Characterizing a “better” detection technique involves yrfactors including the FP
and FN rates and the rate of detection relative to the nunfbestaork packets needed.
The hypothesis is that by characterizing the selected 8etlell (SSH) traces, a novel
technique of watermarking the timestamps can be identifiatldemonstrates an
acceptable level of accuracy and speed (e.g., number oéfsagkinterval detection
length) while retaining resistance against known attaGenerally, the number of packets
and time required to detect the watermafiieat the accuracy. If the number of packets
required for the higher detection rate is excessive, thenigoe may not be adfective.

For example, if the system identifies 10% more stepping stboeit requires ten times
the number of packets, it may not be suitable because manprietonversations are

short-lived.
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3.1.2 Approach. To improve stepping stone detection, this system illustrat
novel technique to watermark network packets. The main corapts of this research
comprise characterization of thefiita, algorithm development, and system testing.

Using a selected set of typical stepping stoné&ittdrom the historical SSH traces
extracted from the CAIDA 2009 dataset [24], opportunitiesxploit previously unknown
aspects of the stepping stoneffi@are used to improve the detection algorithm. The
random samples of historical data are used fdfigeneration during the experiments.
The simulation model estimates the algorithm performanaedontrolled, theoretical
experiment.

Once the model is analyzed and the algorithm is adjustede &kperiment further
verifies the performance. Often times, analytical modelseitworks have dierent
variances when compared to live networkfia For that reason, live performance
analysis is critical to establish validity and demonstthtd the recommendations improve

detection.

3.1.2.1 Analysis. The full CAIDA 2009 dataset includes over 2.4
Tebibyte (TiB) of network data without any payload infornaatti Initially, tcpdump filters
port 22 trdfic relevant to SSH or Secure Copy (SCP) containing data. Dake{saare the
primary targets to modify using the active watermarkinge Tfiming of management
commands (i.e., TCP setup, acknowledgement and reset patkabdt conducive to
modification because of requiredfBering which prevents atomic processes from
completing. The simple tcpdump filters reduce the amountfofrmation to be processed
to approximately 5 gibibyte (GiB). Writing a program to parie files and extract the
timestamps requires multiple steps. Note that more spetgtails are provided in
Appendix A. First, the program identifies the tuple of eacbied containing the source
Internet Protocol (IP), source port, destination IP andidason port. It then maintains a

database of tuples identifying each individual networkatn. Next, as the database of
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tuples fills to approximately 90%, it periodically filterstall streams containing fewer
than a specified amount of timestamps. This removes thers$rednen a connection is
attempted, but not actually made. In this research, themaxi amount specified for
removing network conversations is fourteen packets inttenthis prevents stale
conversations from filling the database too quickly whilenrg@ng the longer lived
conversations ideal for testing the watermark technigie grogram maintains a
database of approximately 50,000 entries and purges stlhies/when the capacity
reaches approximately 90% capacity. The program recoedsrittestamp of each packet
when the destination port is 22, indicating SSH or SCHitraThe final filter removes all
traces containing an average packet size greater than bibgte (KiB). Typical packet
sizes of SCP tific average larger sizes, so the filter removesiitréghat indicates SCP
rather than SSH. The final file size for the extracted timeptafor the CAIDA 2009

dataset is approximately 140 mebibyte (MiB).

3.1.2.2 Comparison to Previous DataSixty traces from the Houmansadr
data [8] (also extracted from the CAIDA 2009 January datasetrompared to the data
after parsing the files. Though the actual tuple that comedp with the previous research
is not provided, Houmansadr indicates that the traces anedted so that they are all
approximately 120 seconds in length. Both the extracted lméibumansadr traces
reveal that the typical SSH fifac inter-packet delays are generally bimodal and contains
peaks at approximately 0.05 and 0.2 seconds. The plotsaedesreviously show some
indications of the bimodal inter-packet delays, but thepahow that there are many plots
in which there is a high rate of tffac without much deviation. Although Houmansadr
references that he is able to extract over 300 useful SSgifaom the January CAIDA
2009 dataset, the filters described in Section 3.1.2.1 revda 99 useful traces for this
experiment. Figure 3.1 illustrates the comparison of theripacket delays of the

extracted data and a similar dataset provided by HoumansSayire 3.2 shows the density
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plot of the inter-packet delays of the same samples. NoteAghyendix B illustrates the
unused traces that exhibit characteristics not consistgnthuman-generated ftifec.

These rejected traces show constant packet rates as wgttasely high rates of speed.

CAIDA 2009 Dataset #225 Houmansadr Dataset
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(a) Extracted Dataset Sample 225 (b) Houmansadr Example Number 4

Figure 3.1: Example Plots of Extracted Timestamps and Hogiadr Data

3.1.2.3 Inter-packet Delay of SSH Stream§he density plots of the
inter-packet delays reveal that most of the traces appdss bomodal. The bimodal
distribution is not consistent with previous research thdicates the inter-packet delay is
distributed according to a Poisson distribution; howetres,distribution is consistent with
recent research regarding the inter-packet delays. Thedahtharacteristics of the
differential time values are shown in Figure 3.3. A bimodal dtistron does not lead to an
obvious method to watermark as it idfttiult to retain the underlying statistics, making
the watermark invisible. Analyzing theftkrences between the inter-packet delays shows
that it follows closely to a normal distribution. The ana$ysf the diference between the

packet delays closely resembles a second derivative agugages smoothly to an
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Density of Time Differentials, CAIDA 2009 Dataset #225 Houmansadr Density of Time Differentials

Frequency

15
I
Fi

1.0
1.0

0.5
I
05

0.0
0.0
1

T T T T T T T T T T T
0.0 05 1.0 15 20 25 3.0 0.0 05 1.0 15

Time Differential (s) Time Differential (s)

(a) Density of Inter-packet Delays, Sample 225(b) Density of Houmansadr Data, Sample 4

Figure 3.2: Example Density Plots of Inter-packet Delays Extracted Data and
Houmansadr Data

analysis using DWT techniques. It is important to note thistainalysis is dferent from a
lag -2 plot, which shows the fierence between every other packet. Instead, this analysis

illustrates the dterential analysis of the timestampférentials.

3.1.2.4 Discrete Wavelet TransformAs indicated in the background,
previous multimedia watermarking technigues use the DWE fllhdamental waveform
for the DWT is the Haar transform and is applied to the SSH tinffei@ntials. The values
indicate that the first three vectors are approximately dlgndistributed around zero for
all of the SSH traces. This leads the algorithm developnweunse first detail vectat! of
the DWT to encode the watermark values using the sign of thiexeeilot experiments
result in the final algorithm shown in Figure 3.4 and the deteio Figure 3.5. Note that
the synchronization frame and parity check are featurdésctiveect problems later

observed after adding simulated jitter.
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Density plot of interpacket delays
for three CAIDA 2009 samples
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Figure 3.3: Distribution of Offerential Time Intervals for SSH Streams. Three values
chosen from the 2009 January CAIDA dataset to show bimodaactexistics.

3.2 System Boundaries

The System Under Test (SUT) consists of many componentsS$Hiieincludes the
watermarker and the detector as well as the network equipamehhosts. The dotted
lines in Figure 3.6 reflect the logical boundary of the syst@éhile the components may
be physically or geographically separated, the mechanefomning the active
watermarking and the component responsible for detedtiegvatermarks define the

logical boundaries.

In the simplest design, the SUT is self-contained in thequteid network. In more

complex designs and with appropriate permissions, thermatéer and detector do not
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Figure 3.4: Algorithm of the Watermarker

need to be on the same physical or logical network. With tlopgr parameter selection,

the detection mechanism is robust against variances céydbe network.

The main Component Under Test (CUT) is the watermark deteatmgurithm. While

both the watermarker and the detector perform twhedent operations, the actual CUT is

the detection algorithm. This research builds on previmssghs and tests conducted to

achieve a high level of detection with the fewest number okpts or time. Immediate

and accurate identification of the stepping stones are tls im@ortant characteristics of

a system that is operationally useful to network defensés fE@search introduces a novel

watermarking technique and evaluates tiieaiveness.
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Figure 3.5: Algorithm of the Detector

3.3 System Services

The SSD provides active network watermark detection in tkegnce of robust
countermeasures without significantliyexcting the network characteristics. The success
of the system primarily resides in accurate stepping stetection. Given a null
hypothesis that there is no watermark present at the detdotooutcomes of the detector

fall into one of four categories:
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Figure 3.6: The System Under Test and Component Under Test

e True Positive (TP): The detector correctly identifies a watgked stream as

watermarked.

e False Positive (FP): The detector falsely identifies a natewnarked stream as

watermarked.

e True Negative (TN): The detector correctly identifies a meatermarked stream as

non-watermarked.

e False Negative (FN): The detector falsely identifies a wasgked stream as

non-watermarked.

The watermark presence is determined at the detector byatexwark statistie. This is
calculated as a ratio of successfully detected synchrboizérames divided by the
number of total frames. Comparing this statistic to the daiet¢hresholdy determines
whether a watermark is present. Adjusting the thresholdhiglaer value (i.e., closer to 1)

results in less FP values, but increases the number of FNeerfiry the threshold (i.e.,
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closer to 0) generates more positively identified waternsénidams, increasing the FPs
while lowering the FNs.

Another system service is the modified network stream. Théifications of the
inter-packet delays may indicate to an attacker that tleastris altered. Previous research
indicates that this watermarking technique is resilierdrigtanalysis and the distribution
of the watermark data is nearly identical to the original.

Significant system failures represent a critical reduciiotie dfectiveness of the
system in terms of the overall goal. A false negative deteatepresents an active
stepping stone that is not detected and therefore can sy in the network. While the
attacker may need additional measures to remove a watertharéctive removal of a
watermark by the attacker is also a critical system failure.

The sub-optimal performance measures demonstrate syailenes$ in which the
system may not perform ideally, but the goal of detectingstie@ping stones when present
is still maintained. False positive detection may requirenhn intervention to filter the
false detections and can degrade overall performancesitat severe. The detectable
watermark and network interference both provide the stepgiones with additional
information regarding detection tactics, but these do eptesent critical failures of the

system to detect the stepping stones.

3.4 Workload

The stepping stone ffigc has factors that are considered system workloads. The
packet size, throughput and inter-packet delay are impoféators that significantly alter
the performance of the algorithm. The primary factdfe@ing the algorithm are the
inter-packet delay distribution and packet inter-arrinzdé. Because the detector is
fundamentally based on the positioning of packets, cdyethlosen parameters are often

only effective against tridic that follows a certain workload. If the algorithm changes i

37



any way, other factors may have greater influence. The pyifaators in this system are
the stepping stone tiiic throughput and inter-packet delays.

In this experiment, the workload factors are chosen by rargselecting previously
recorded SSH tféic flows from the CAIDA dataset as system inputs. The packehtgsi
are watermarked and input to the detector. To analyze thesktibn, random unmarked
packet streams bypass the watermarker and are input glinetdlthe detector. The

simulation and live experiments use a random selection frenCAIDA 2009 dataset.

3.5 Performance Metrics

In the SSD, the primary goal is to detect network steppingesgolndeed, accurate
detection without significantly altering statistical distitions are the primary factors in
optimizing the algorithm. The primary metrics are significe identifying the presence
of a watermark and correctly extracting each encoded bdos#ary metrics not essential
to this system are addressed, but are not the main focus aéskarch. The primary

performance metrics to evaluate the SSD are:

¢ False Negative Detection Rate
e False Positive Detection Rate

e Correctly Extracted Watermark Bits

The FN rates are essential metrics in evaluating the acgwofabe detection system.
From an operator workload perspective, the FP rate is ggmalortant to identify the
detections that are not true stepping stones. The bitstdetper watermarked stream are
important to identify the accuracy of the system as well asdtection speed. Although
the threshold determines whether the entire stream istéetas watermarked, the
number of bits correctly detected per watermarked streais@simportant in correlating

the stepping stones.
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3.6 System Parameters

All of the parameters thattiect the performance of the system can be characterized
as workload parameters and system parameters. These anmeishtable 3.1. Figure 3.7
also shows the SUT with the parameters, workloads and autpbe system is most
sensitive to the watermark interval length directly catiglg with the number of
timestamps in each stream. The frame size determines thermictimestamps
necessary for the watermark and must be a multiple of the runftencoded bits. In this
experiment, the system encodes seven bits with one patjtydihe frame size must be at
least 16 (i.e., (# 1) x 2). A frame size of 32 is also tested in the simulation. The bit
detection level determines the number of correct bits reguo identify each
synchronization frame. Typically this value is either 0 an the pilot studies, but
increasing the value allows for the detection in the pres@figreater noise. The
minimum value of 0 decreases the likelihood of a false pasitout it may pass over
actual synchronization frames if there is a large amountbiark noise. The frame size
is expected toféect the system, but not as much as the bit detection levelthFashold is
selected to minimize the FP and FN rates and the rest of tlaezders have a low

sensitivity to the system.

Table 3.1: System and Workload Parameters

System Parameters Workload Parameters
Watermark Interval Length Previous SSH trace to be watermarked
Frame Size (s) Previous SSH trace not to be watermarked

Bit Detection Level (T)

Watermark Thresholdy)
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3.7 Factors

In concert with the primary motivation for this researcle #ystem parameters
involving the watermarking and detection algorithm arertieen factors to be studied.
The algorithm factors include the selection of the bit deéteclevel, frame size, and
watermark thresholdy]. In addition, factors during the simulation include thenslated
noise (jitter) and the network path for the live experiment.

These factors shown in Table 3.2 are the subset of the systeampters evaluated in
the simulated experiment based on expected performancaunesa The simulation
results confirm whether the levels should be maintainedare#perimental design or if
they should be modified. A preliminary threshold for the lesgeriment is also
determined during the simulation. The simulation comp#resvatermark statistic to the
expected theoretical value in order to further validateetkigected results and ensure the
model is accurate. The simulated jitter levels are selectég similar to previous
research by Houmansadr. Other research shows that woesjittaisvalues range around

5 ms [14], so these chosen values represent values beyondyseesearch extremes.
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A comparative analysis used for validation is performeagsioth the extracted
SSH traces as well as 60 traces provided by Amir Houmansgehrasf the SWIRL
research. The extracted dataset provides the fundamehiigisy the Houmansadr traces

are used to validate this research against previous watkmesearch.

Table 3.2: Factors for Simulated Experiment

Factors for Experimenk Levels
Simulated Jitter 6.2-12 ms Standard Deviation
Detection Threshold 0, 1 bits
SSH Trace Data | Watermarked Traces, Unmarked Traces

Table 3.3: Factors for Live Experiment

Factors for Experimenk Levels
Network Path Tokyo, Ireland, California, Virginia
SSH Trace Data | Watermarked Traces, Unmarked Traces

3.8 Evaluation Technique

The two evaluation phases of the SSD are simulation and aXperiment. The
simulation watermarks the timestamps of a random extraCfd®A SSH trace. The
client generates packets at intervals based on these éimpst The packets timings are
then modified using Gaussian noise and input to the detedterwatermarker and
detector are simulated in a statistical package called Rrdsdts determine the
interaction between factors and also estimate the amouept€ations to run in the live

experiment.
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The live experiment uses the same random sampling of treaethe output of the
watermarker and detector are performed using hardwareimgaitations. Because each
random sample is approximately two minutes in length, thaler of replications in this
phase is less than the analytical phase. Each of the corspntire live experiment are
virtualized t1.micro Amazon EC2 instances. The configuretiof the packet generator,
repeaters, and the receiver are listed in table 3.4. Thespgekerator and receiver code is
written in Python using the Twisted module version 11.0.0 Snapy module version
2.1.0.

A graphical depiction of the live server locations is showirigure 3.8. The black
lines represent packets generated by the client and theéne=idhow the direction of the
stepping stone tfac. The California server generates all of the liveticaand sends it to
one of the repeaters or the final destination in Virginia. Tdmeeaters forward the tifec
on to the next server and ultimately all end in Virginia. Tlegwork path for the repeaters
is Tokyo to Ireland to Oregon to Virginia. Four separate psses on the client generate
independent data streams simultaneously during the expetal phase. The combination

of marked and unmarked ff&c more accurately simulates noisy network environments.

Table 3.4: Live Experiment Hardware in Amazon Elastic Coreftioud

System | Location Zone AMI Linux Distribution

Client California| us-west-1b | ami-1bd68a53 Red Hat Linux (64-bit)
Repeater ] Tokyo | ap-northeast-1a ami-0644f007| Red Hat Linux (32-bit)
Repeater 2 Ireland eu-west-1¢ | ami-953b06el Red Hat Linux (64-bit)
Repeater 3 Oregon us-west-2a | ami-38fe7308| Red Hat Linux (32-bit)

Server Virginia us-east-la | ami-60eel109 Ubuntu Linux (32-bit)
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Figure 3.8: Amazon Elastic Compute Cloud Locations

The validation strategy includes a cross-validation ofsineulation and live
experiments and a comparison against previous researeHivelexperiment results
should match closely those predicted from the simulatedaihd@bmparisons using the
previous Houmansadr data to the SWIRL design also help valitiatresearch against

another watermarking technique.

3.9 Experimental Design

The experiment requires a full-factorial of the parameteguantify the interaction
as well as a substantial amount of replications to allowtlierjitter levels. Based on
previous research, approximately 1,000 replicationsterasticient statistical basis for

analysis and the pilot studies determine the statistigalificance of these results.

43



Therefore, approximately 24,000 total iterations are pddd evaluate the system
performance and validate the system against previousrasea

The live experiment requires a full factorial of the serv@es., Tokyo, Ireland,
Oregon and Virginia) and the marked and unmarked data. Tinected SSH traces are
selected at random for each sample. Based on the pilot spagipsoximately 100
samples of 120 seconds in length are required to estimateRtaand FN values for each
server. The amount of repetitions is based on the variantteeafata. Assuming four
independent sessions consisting of three watermarkedremdronarked session, the total
number of trials per repetition isX¥4 x 100 = 1, 600. A total of five repetitions results in
8,000 trials in the live experiment. Assuming each trialgpraximately 120 seconds and
four processes run simultaneously, the live experimersalbout 67 hours.

The model confidence level is 95% to establish factors befdrardware
implementation is considered. Before progressing to tleedikperiment, the simulation
should show that the watermarked and unmarked statisecdiferent at a 95%
confidence level or better. Because of tifi@e required to build and run the live network
model, a 95% confidence level ensures that the model camdatewithin the specified
statistical accuracy, that the performance is in fact saperhe variance in the live
experiment may be greater than expected, but the resulisdssiill show a diference

between the marked and unmarked streams at a 95% confiderteribetter.

3.10 Methodology Summary

This research analyzes previous networldittaand introduces a novel watermarking
technique. The tfic characterization uses statistics to analyze previousigpnetwork
traces from the CAIDA dataset to characterizéficaypical for a stepping stone. The
research analyzes inter-packet delays for tifi@dint streams and determines the

characteristics of the tfiac to better optimize the detection parameters.
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The extracted timestamps are used as data inputs to tesdgtretan using a
computer simulation in R. The results of the simulation d&thlthe baseline for
validating the algorithm and the live experiment. Factashsas parity checking and
framing are evaluated in the algorithm to determine intivas and achieve a more
optimal performance in the live experiment. The simulaadso sets an initial baseline for
the threshold value used to determine if a watermark is ptese

Finally, the trdfic generated by a live computer is passed through varioupistgp
stones across the Amazon EC2 to determine true rates in Mmoaments. This
substantiates the analysis in the simulated model. Thimtgue is expected to detect the
presence of the watermark with predictable error rateggusimilar stream sizes (i.e.,
length of time) to the SWIRL design . The values extracted byd#tector are also

expected to match the watermark sent by the client.
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4 Analysis and Results

In this chapter, the tfc analysis of the CAIDA 2009 dataset is first presented. The
features are used to develop the algorithm of the watermarietthe detector. Next, the
simulation results demonstrate a statisticéledence between the watermarked data and
the unmarked data. Based on results, a threshold is detaefnamketect the presence of
the watermark. Finally, the analysis of the live simulattiamonstrates that this technique

is a viable watermarking algorithm for certain types of rative trdfic.

4.1 Traffic Analysis

Analysis of timestamps reveal important characteristoist, Figure 4.1 illustrates
the first level Haar wavelet decomposition vectdtsd?, andd®. Each of the vectors are
approximately normally distributed around zero. Secone density plot of the
timestamps appear bimodal. The Haar observation is useéyplying the watermark
using the DWT because the watermark must retain the bimodahcteristic for
invisibility.

The Haar wavelet decomposition is performed usingibeeslimlibrary in R. The
first vector represents a scaled value for tiéedence of the pairs of timefierentials.
For example, using the timeftierentialsny, ny, ny, - - - , n; the values of the first vectat

is as shown in Equation 4.1.

-1
d%:$(ni—ni+1),n:1,3,---,n—l (41)

The plot of the first three vectors for the four level Haar deposition using 32,768
unique timestamp tlierentials is shown in Figure 4.1. As shown in the figure, tHaes
for the first vector are approximately normally distribusgdund zero. This discovery of
the vector distribution originally led to the realizatiohtbe watermark application using

the sign of the vectors. Performing an inverse DWT on the maaipdd® vector while
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retaining the remaining vector has dfeet similar to interchanging the packets in the

time domain. This is graphically depicted in Figure 4.2.

Density plot of Haar DWT Vectors, 32768 Time Differentials
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Figure 4.1: Distribution of the first three detail vectors the four-level Haar Discrete
Wavelet Transform using time fierentials as inputs.

4.2 Algorithm Development

4.2.1 Frame Length. The discrete wavelet transform vectfrcontains exactly
half the number of values as the input vector. Thus, at mesivtitermark algorithm

encodes half of the number of bits selected for the framepszameter. To use an 8-bit
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Figure 4.2: A graphical illustration of the watermark apglio a sequence of time packets.
A sign change in thd?! vector appears like two timestamps changed places in time.

watermark, the frame needs to be at ledsvBeren is an integer greater than three. The
transform relies on an accurate synchronization of thedrbatause the transform
generates the vector values based on thferdintial time pairs. If even one timestamp is
lost, all differential time pairs are modified from that point until the efithe frame. This
requires that the frame is tightly synchronized and thatlasses or errors are identified
and corrected quickly. The requirement leads to the geperaf the synchronization
frame for each watermark. Although this data is redundaatlaws for identification and

in some cases correction of errors in the presence of netmamsle and packet loss.
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4.2.2 Synchronization FrameThe algorithm is also dependent on the choice of
the synchronization frame. Because the watermarker ancetieetdr need to use the same
value in the synchronization frame, the system is labeleseas-blind. The discoveries
during the experimental runs show the characteristics ghatsonization frame that is
more robust than others. First, if the synchronization gas8 bits, then the two four bit
words should be dierent. The reason for incorrectly identifying the synchzation
frame in these cases is due to the random watermark. If thehsynization frame
contains bits ABCDABCD, the detector is more likely to incorhgadentify the
synchronization frame if the watermark contains the sammlwothe first or second
positions. In other words, if one word of the randomly chosattermark matches the
synchronization frame (i.e., ABCDEFGH or EFGHABCD), the deteatcorrectly
identifies more synchronization frames than is predictedradom. In addition, the
synchronization frame should contain an equal number ofl04mits. This retains the
original distribution centered around zero of the Haar @edt. The chosen

synchronization frame for the experiment is 1100 1010.

4.2.3 Frame Size.The DWT requirement of 2values per frame requires the
encoding of 8 bits to have a frame size ok 8 wheren is an integer greater than 1. The
larger frame size encodes the synchronization or wateramrkws of 8 inside the larger
frame vector. Increasing the frame from 16 to 32 values doesnrease the detector
performance in terms of speed or accuracy. In fact, in soreescthe 32 value frame
makes it less resilient to errors that occur near the beggnoi the frame. Assuming that
the errors occur at random, the 32 value frame does not posgvantage over the 16
value frame. Pilot studies indicate that the 32 value frapesdot dfer a significant
performance improvement over the 16 value frame. In a ph/sigplementation, it is
also more diicult to modify a larger frame size because offbuing. For these reasons,

the live experiment only uses a frame size of 16 to increasedsiliency to lost packets.
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4.2.4 Threshold. To detect the presence of the watermark using a semi-blind
detector, a calculation needs to be made to determine if @rmatk is present. The
technique requires the synchronization frame to be seot fwieach watermark. The
presence of the synchronization frame preceding each nvatkrcombined with the
distribution of the Haad' vector allows the threshold to be a direct calculation of the
number of synchronization frames detected. Assuming thanawatermarked streadt
vector follows the distribution given in Figure 4.1, thediihood that the detector will find
a synchronization frame at random is evaluated in Equati®ywhereT is the bit
detection level for an 8 bit synchronization value. The Inieshold is best described as
the number of accepted bit errors for the detector to cdyretentify the synchronization
frame. Note that setting = O means a synchronization frame is recorded only when all

eight bits are correctly detected as in,

.
P(T) = Z(g_iT)(o.s)s—T (0.5)". (4.2)
0

ForT = 0, the chance of a synchronization frame exactly occurgr@y0039. When
T = 1 for use in noisy environments, the probability increasesifthe zero bit value by a
factor of 10 to 0.03516. These analytical thresholds arérroed using 60 unique time
differential arrays of over 3,000 data points. The number ofdithe previous
synchronization frame exactly occufB € 0) is 0.0038832 (i.e., 1563 occurrences in
402500 unique 16 value frames). Settihg: 1 also yields similar results with a

probability of 0.035098 (i.e., 14127 correct in 402,500qua 16 value frames).

4.3 Watermark Application and Invisibility

A density plot in Figure 4.3 shows an unmarked sample, theessample after
watermarking and the watermarked sample with noise addetiid case, the additive

noise is the maximum 12 ms and demonstrates a significateice between the
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original and watermarked sample. It also shows how closeyatermarked sample
resembles the unmarked sample. This is due to the algoriiftmg the inter-packet
delays and its ability to preserve nearly all of the inteivat densities. The only time
differentials that change from the original are those in whielnibgative watermarker
output is changed to the absolute value. This occurs in kessQ.1% of the total number
of packets. The detector is still able to correctly extrhetdata encoded in the

watermarked stream with additive noise as shown in Figuge 4.
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Figure 4.3: Density plot illustrating the unmarked, watarked and watermarked sample
with simulated noise.
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4.4 Simulation

4.4.1 Pilot Studies. The pilot studies using the R simulation show that the frame
size of 16 is more optimal for the detector. By reducing thengasize to the smallest
value allowable while encoding 8 bits, the number of synolzation frames increases

and enables the detector to more accurately decode themaates.

4.4.2 Threshold determination.The ability to determine if a watermark is present
depends on a suitable choice for the thresholth this casey is not analytically
determined, but experimentally derived by the distributd the watermarked and
unmarked data in the presence of noise. The output of thdaiiom determines that the
95% quantile is approximately the point at whigls equal for the unmarked and the
marked statistics. For the purposes of this experimen9Hé quantile for the unmarked
data statistic is 0.01042 and the 5% quantile for the watdkeabdata statistic is 0.01045.
The actual threshold lies between these two points, andhéptrposes of this
experiment, the mean of the two values is used in whkieh0.01043. Note, future
research may be able to analytically derive this value basdtie rate of tréic as well as
the statistical properties of the DWT vectbr.

The watermark estimated probability densities are shoviigare 4.4. The
threshold value o = 0.01043 is also shown. Note that these densities are estimated
using a kernel smoothing function and scaled to appear osaime graph. This causes the
threshold to appear at a higher value than when the two desnsitoss on the graph. Also,
the watermark statistic must be positive although this lgidgpicts otherwise because the

density is only estimated.

4.4.3 Performance of the systenThe simulation randomly selects a CAIDA 2009
extracted dataset and randomly applies network jitterreedpplying the detection

algorithm. The system then tests for the presence of a watkrnm these streams and
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Figure 4.4: Density plotillustrating the estimated prabgidistributions of the watermark
statistic. The threshold of = 0.01043 is also shown.

unmarked streams. The results show that using the threghold 01043 at a 95%
confidence level, the FP rate is 4.6-5.1%, FN rate is 3.98%,4nd the error rate in

which the extracted watermark is incorrect is 7.86-8.30%.

4.4.4 Comparative Analysis.The simulation also validates the data rates
compared to the previous research. Using the 60 Houmansaghias, the error rates are

drastically lower than using the 99 extracted CAIDA streamshe simulation, the 60
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samples produce similar results using comparable amofinetwork jitter. In the case of
the SWIRL test, live jitter values results with a standard dgon of 6.2-12 ms are
replicated in the simulation. For this research, insteaasofg previously recorded values,
the jitter is simulated as a Gaussian random variable witleamof zero and standard
deviation of 6.2-12 ms. In the case of the DWT design, the eaterin which the

extracted watermark is incorrect is 1.57-2.97 per 10,0@028% confidence. The FN rate
using the Houmansadr samples is 7.8-8.4 errors per 1,000lesmhich is greater than

the SWIRL rate of 1. The FP rate of the simulation is closer to the SWIRL system with
a rate of 0-7 errors in 100,000 samples. The results of thelatran using Houmansadr’s
values demonstrate a response in concordance with prengsearch.

Using alternate data by synthesizing streams based onglie di¢stribution also
validates the performance of the algorithm. In this scenanie simulation randomly
generates 120 second timestreams using the tcplib distniband determines the
performance. Randomly selecting the 6.2-12 ms jitter, thiem@ark extraction error rate
for the tcplib distribution is 6.97-7.28% at a 95% confideleel. This matches very
closely with the simulated values from the CAIDA 2009 extealctlataset thus further
validating both the simulation results and the accurachef@AIDA 2009 extracted

timestamps.

4.5 Live Experiment Results

The results show that the watermarked data is mdtedit to discern from
unmarked data as the ffi@ traverses more paths. This follows intuitive knowledgs ts
the path gets increasingly noisy, the calculated statistievs closer to the threshojdand
becomes more like the unmarked data. Sending the data froifoi@&l through Tokyo,
Ireland and Oregon before the server receives it in Virgatids additional network noise

such as jitter, thus generating more errors.
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4.5.1 Watermark Statistic AnalysisTo determine whether a watermark is present,
the detector calculates the valudy analyzing the number of synchronization frames
present and dividing it by the total number of frames. In thgecof a perfect network path
with no noise, the number of synchronization frames will kaatly half of the number of
total frames in the stream. For unmarked streams, the thiickslll be closer to that
determined using Equation 4.2 depending on the bit threslar a bit threshold of zero,
the synchronization frame must exactly match and the unedbstatistic should be
approximately 0.003.

Figure 4.5 shows the density of the watermark statistics theecourse of the
experiment. The unmarked streams to each target are groogeither and closely match
the expected results in which the synchronization frameisaed according to random
chance. The statistic mean for the watermarked streamesases as the target approaches
the final destination. The Tokyo server traverses the mostections and, as expected, is
less discernible from the unmarked streams. Likewise,iagricfic directly from the
California server to the endpoint (i.e., Watermark Virgimdigure 4.5) generates

statistics with a higher mean than the other targets.

4.5.2 False Positives and False NegativeShe FP values occur when the detector
identifies the unmarked stream as containing a watermamkrdsults confirm the
expectation that the network path should nidéet the error rates. Figure 4.6 shows the
density of the unmarked streams for each of the targets. TilwoX@n test also confirms
that there is no statisticalftierence between the watermarked and unmarked streams.

The FN values behave muchfidirent than the FP. The FN values are dependent on
the network characteristics, while the results show th@fRR values are not dependent on
the network path. The network noise alters the time delagsmanner that lowers the

statistic mean such that the detector fails to identify ttesence of the watermark.
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Density plot of Watermark Values,
Threshold=0
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Figure 4.5: Density plot of Watermark Statistics over atises. Unmarked data from all
servers is grouped into unmarked values.

Excessive jitter, noise and delay are factors contribuintpe FP rate. In the experiment,
the Tokyo server generates the greatest number of falséivegevhile the closest server
in Virginia generates very few. This is expected becaus@okgo server traverses the
largest path from California through Tokyo, Ireland and @regefore reaching the target

in Virginia.

4.5.3 Dataset Anomaly.In the case of the graphs depicted in this research, it is
important to identify and provide justification for an idéietd data anomaly. Figure 4.5
shows a small peak in the unmarked data at approximately Big@re 4.6 also shows
that this anomaly is present in datasets sent to all serdgen further investigation, these

data points originate from index number 99 of the extractd.dT his dataset contains
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Density plot of Unmarked Values, Threshold=0
Server Chain California —> Tokyo —> Ireland —> Oregon —> Virginia

Target
Virginia
-4 Oregon
0.012 Ireland
Tokyo
0.010 -
| 4
0.008 4 1
4 T
£
2 4
= i
c &
8 0.006 - ).
i
i
4 !
-
0.004 - N
0.002 -
..... L
0000 — i‘-. — ——

0.00 0.01 .02
Watermark Va?ue

Figure 4.6: Density of Unmarked Live Experiments.

only 121 time dfferentials, resulting in a maximum of three synchronizatind data
frames to watermark. In this case, the unmarked data catt@mframes of 16 that
contain the synchronization frame. This causes the detexrtegister the watermark
statistic unusually high for an unmarked dataset. It is irtgyt to also recognize that
although the unmarked data contains the synchronizatendt this does not result in a
lower detection rate when the same sample is watermarkehisisystem, when the
synchronization frame is identified, the detector decodesvatermark in the next frame
and advances past the watermark frame to locate the nextr®meation frame.

Advancing to the next frame prevents determining the presehany additional
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Density plot of Watermarked Values, Threshold=0
Server Chain California —> Tokyo —> Ireland —> Oregon —> Virginia
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Figure 4.7: Density of watermarked sessions during liveeexrpent.

synchronization frames inside the current window. Thisseawa sample such as data
point 99 to appear to have a large unmarked value when thalgosence of a
synchronization frame across the entire sample is only8&D1This flaw in the
calculation of the statistic is also described in the futuoek along with a

recommendation to correct for these unique cases.

4.5.4 Watermark Bit Errors. Another important aspect of the system occurs after
the detector threshold determines that a watermark is pregbe extracted values should

match the code watermarked by the client in order to coedlat stream correctly. As
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expected, the Tokyo stream generated the greatest pegeasftavatermark bit errors and
the Virginia server contained the least. Figure 4.8 showsthtogram of the number of
bit errors in those incorrectly decoded watermarks. Basatd@nesults that most errors
were a single bit, some method of error correction in additeothe parity may enable the

detection and correction of these errors in future systems.

Histogram of Bit Errors in Trial One, All Servers Histogram of Bit Errors in Trial Two, All Servers
133 Data Points 118 Data Points
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Figure 4.8: Histogram of bit errors occurring during twalsi. Only watermarked streams
with bit errors present are represented in this plot.

4.5.5 Wilcoxon Rank Sum TesThe Wilcoxon rank sum test is conducted using
the statistic between the watermarked and unmarked datéoseteasure the statistical
difference. The Wilcoxon test is used because the distributibiie watermark statistics
are unknown. The two analyses determine the statisti@rdnces between the
unmarked and the watermarked data and between the unmar&arhs to the dierent

servers. The p-value of the Wilcoxon rank sum test for theanked data against any of
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the marked sources is %2078, Any p-value less than 0.001 indicates &sient
statistical dissimilarity demonstrating thefférence between the unmarked data and the
watermarked data sent through any of the routes in this expat.

Although there is a statistically significantidirence between any of the
watermarked and unmarked datasets, the noise should r@alsmilar impact on the
unmarked data. When an unmarked stream is sent, the routeeamork noise should not
make the presence of a watermark any less or more detecfai¥dcoxon rank sum test
performed on the four sets of unmarked data (i.e., Tokytaris Oregon, and Virginia)
show that there is not a statisticati@rence between the unmarked data. Table 4.1

illustrates the p-values for each pair of tests.

Table 4.1: P-values for Wilcoxon Rank Sum test between unecbdlatasets

Ireland Oregon Virginia

Tokyo | 0.7818| 0.7288| 0.09962

Ireland X 0.4832| 0.06921

Oregon X X 0.197

In addition to testing the tierence between the unmarked and watermarked data, it
is also interesting to note that there is a significaffedence between some of the
watermarked datasets. While théfdrence between sending the watermarked streams
through Tokyo and Ireland is not necessarily significgnt(0.001), all of the other
datasets show a significant statisticdfelience based on the p-valugs<{ 0.001) in Table

4.2.

These results a statistical significance of the watermaskedms exists between

servers. Although the original research goal is not locgtire origin of the stream, the
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Table 4.2: P-values for Wilcoxon Rank Sum test between wateked datasets

Ireland Oregon Virginia

Tokyo | 0.1148| 4.129%10° | 2.2x10°16

Ireland X 1.395¢10°6 | 2.2x10°16

Oregon| X X 3.64210°°

p-values indicate a statisticalffirence between routes that traversed continents and those

that did not.

4.5.6 Results of five trials.Four additional runs establish a statistical basis for the
individual experiments. In each trial, three watermarked ane unmarked stream are
simultaneously sent through the network paths describedqursly. Each run consists of
300 watermarked samples and 100 unmarked streams randbadgrcfrom the
previously used CAIDA 2009 dataset of 99 samples. Table 43 &gure 4.9 show the
95% confidence interval for the watermark statistic, FP adddtes in this experiment.

The results of the FP values demonstrate that there is natistgtal significance
between the target servers as shown in Figure 4.9(b). Adfintloe interval for the
Virginia is smaller than the other targets, it still fallstiin the interval of Ireland and
Oregon confidence intervals. This smaller interval is mi@sty caused because this path
includes no stepping stones and contains the least netvads&.n

Different from the FP rates, some of the FN rates are statigtatiflierent from each
other. As seen in Figure 4.9(c), the Tokyo and Ireland serakmg with the Oregon and
Virginia targets are not statistically significant from baather; however, these two sets
are significantly diferent in the live experiment from one another. As these tviasds
are located on dierent continents, this provides evidence that the FN ratetsrmined

by the watermark path.
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The accuracy rate in which the detector correctly extrdwssatermark is observed
in five trials as well. Figure 4.9(a) demonstrates that ex¢éhwatermark accuracy is
dependent on the network path. Like the FN rate, as the nuails¢éepping stones
decreases and the network path is closer to the final targeprobability of an incorrect
watermark decreases. While there is not a statisti¢dréince between the Tokyo and
Ireland servers, each of the other targets demonstratedicitly lower error rate. The
additional network noise in the Tokyo and Ireland servess aicreases the variance of

the watermark errors, generating a wider confidence interva

Table 4.3: Five Trial data showing 95% Confidence Intervalgtie extracted watermark
errors, False Positive rates and False Negative rates

Watermark Error Rates (%) False Positive (%) False Negaib)e (

Simulation 7.9-8.3 4.6-5.1 3.95-4.44
Tokyo 16.6-26.0 4.22-9.77 5.16-10.04
Ireland 11.0-18.6 1.22-9.57 5.11-6.52
Oregon 6.8-8.8 0.07-7.67 2.91-4.02
Virginia 0.3-2.3 3.51-4.07 0.69-3.26

4.6 Validation

The final step of the analysis is to validate the results oettperiment. The two
ways in which the data is validated is by comparing the sitedl@aesults to the live

experiments and comparing the results against other prevesearch.

4.6.1 Comparing the Simulated and Live Experimentdie data from the live

experiment closely matches the predicted data as showigind-#.12. The unmarked
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95% Confidence Interval for Watermark Error Rates 95% Confidence Interval for False Positive Error Rates
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Figure 4.9: Confidence Intervals for the False Positive,d8lisgative and Error Rates for
the five trials.

and the watermarked data follow closely the density for iteednd simulated
experiments. The simulated data shown in black shows teatigttribution of watermark

statistics are a close representative of the live expetiniaren the anomaly of dataset 99
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Boxplot of False Positive Rate as a Percentage Boxplot of False Negative Rate as a Percentage
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Figure 4.10: Box Plots of False Positive and False Negaties expressed as a percentage
over five trials. Each trial represents 100 data points fonarked streams and 300 samples
for watermarked streams.

referenced previously is shown both in the simulated areddatasets at a value of
approximately 0.03. The validation also shows that the kKited trdfic is close to the
worst-case prediction of the Tokyo and Ireland servers.tidues that traversed paths
within the Continental US (i.e., California, Oregon, Virgihihave a mean value greater

than the predicted simulated values.

4.6.2 Detection Rates.The FP and FN rates shown in Table 4.3 also validate that
the detection rates of the live experiment are statisticthilar to the simulation. The FP
detection rate confidence intervals all include the estoh&®6 FP detection for the
CAIDA dataset. Again, this demonstrates that the unmarkéal résults are generally
independent of the target and number of stepping stonesENhates and the watermark
extraction error rates vary more because they have gregpendence on the amount of

network noise. Both of these rates are within the range of tleg@n target, but the
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Boxplot of Watermark Error Rate

0.25
l

0.20
l

0.15
l

Rate

0.10
l
o

0.05
l

_

—_
o
I I I I
Tokyo Ireland Oregon Virginia

0.00
l

Server

Figure 4.11: Box Plot of Watermark Error Rate of all watermdrkata streams over five
trials, 300 samples each trial.

Ireland and Tokyo targets show a greater FN and error ratetiigasimulation. This can
be expected as those targets contained multiple stepmngsts well as greater

distances.

4.7 Analysis Summary

The initial simulation d&fered an analytical basis to set the threshold to determine if

the watermark is present. This valueyofs set between the mean of the quantile which
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Density plot of Live and Simulated Watermarks, Threshold=0
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Figure 4.12: Density plot of Watermark Statistics over Adirers. Unmarked data from
all servers is grouped into unmarked values.

minimized the FP and FN rates at 0.01043. The live experimarg of 300 watermarks
and 100 unmarked samples with a random watermark show verasresults to the
Tokyo and Ireland network paths. As the network path pragesloser to the
destination, the results show that the watermark is moedisble for the Oregon and
Virginia paths. The 95% confidence interval demonstrateatestcal diference between
the Tokyo and the Virginia network paths. The live experitsaiso show that the FP
rates are between 0 and 10%. This value may be lowered by iciggngt the expense of
less true watermarks detected. Currently, the FN rates soebatween 0 and 10% but are
dependent on the network path.

While the detection rate is lower than other watermarkingégues, this novel
approach is valid, especially for human interactive nekwrattic in which the

inter-arrival of packets shows a high degree of randomni@sstimg thed* vector. The
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next chapter applies aspects of this analysis to real woddarios andfers future

research ideas to improve this novel technique.
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Density plot of Unmarked Live and Simulated Experiments,
Threshold=0
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Figure 4.13: Density plot separating Watermarked and UkethiSimulated and Live
Datasets.
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5 Conclusions

5.1 Research Impacts

As the threat of attackers increases, better methods diifgieg and detecting
malicious actors becomes more important. Using netwopkpstg stones, these malicious
users are able to better evade detection and penetrater datepsetworks. This research
introduces a novel technique to detect network steppingestasing DWTs to embed a
watermark on the network packet timing. The detector is baiséd for interactive
sessions normally generated by a human entering keystrdkbsugh TCP packets are
used in this research, because the technique presentelpeimdent of the packet
payload, it can also be extended to other protocols (i.eef Datagram Protocol (UDP)).

The simulation results demonstrate that the system aatuyiddtects the presence of
a watermark at a 5% FP and FN rate for both the extracted tamgxst as well as the
empiricaltcplib distribution. The simulated system also extracts the coBit
watermark with a greater than 90% accuracy. Using sampéesedts from previous
watermark research, the extracted watermark accuraocydses to 99.98% accuracy.

The live experiment demonstrates repeatable results vsatgvorld hosts as
stepping stones. Five trials are conducted in which threelsaneous watermarked
samples and one unmarked sample are sent 100 times at €acbrditarget. The results
show that at a 95% confidence level, the unmarked samplesatisgisally diferent from
each watermarked stream. This provides evidence thatwe @tivironment the technique
can detect network stepping stones.

The capability of the algorithm to function across largdgahses shows that it is
resilient to one of the more popular use cases of the stegpamg. While previous
research demonstrateextiveness using single stepping stones, this researawvadh

the same capability using multiple stepping stones locatédterent continents. The
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statistical diterence shown in the watermarked values between the setlgsvs for
further investigation as to the possibility that this teicjue can assist in geographically

locating a malicious host.

5.2 Attacker Defenses Against Algorithm

To find the stepping stones, the algorithm must be somewhitierg against attacks.
If the attacker sees that a watermark is present, they maypttto subvert or remove the
watermark altogether. Although this algorithm is subjeattethods that reduce the
detection rate, the fliculty of detecting the presence of the watermark makesstliksly
the attacker will attempt them. Some of these attacks alsmnaes that the attacker has
complete control over the stepping stones.

As shown previously, automated fiia does not perform well in this algorithm. If the
attacker cleverly devised a way to send the packets at aardnste, the variance of the
d! vector is not large enough and the changes by the noise @aais the changes made
to the sign. Other constant bit rateftia (i.e., VOIP) is equally dficult to detect when
tunneled through the SSH port .

Packet retransmission and packetization may redffeet&zeness with this
algorithm. As stated previously, if one timestamp is loghia frame, all values from that
point to the end of the frame will most likely be decoded imeotly. The redundancy of
synchronization frames and smaller frame size (i.e., 16eglprovides some protection
against this attack, but are not entirely resistant. Intaaidiif the stepping stones remove
or add ché& packets, this also causes errors due to the missing timpstéthe error
occurs only during the watermark, all values proceedingtiner will be decoded
incorrectly. If the error is during the synchronizationrfra, the results vary depending on

the bit threshold.
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Inducing random delay at any point after the watermark isiag@lso is a successful
attack on this system. Most of the utilities that retrangmaitkets only apply constant
delay, thus as of this writing this attack needs custom @migtoftware to be successful.

Packetization also causes problems and is evident in sostensy as shown during
the client development. If any system re-packetizes thkgia@fter the watermark is
applied, this &ects the inter-packet delay in the same way as if a packebped.
Because the TCP connection is an atomic process requirin@atagements and
sequence numbers, most retransmission systems forwakdtpat the network layer. If
the retransmission program is written as a socket, this reagrne a greater problem as a
socket is more likely to combine smaller packets into a lapgeket depending on the

network speed and operating system.

5.3 Future Work

5.3.1 SSH Traces.Although the CAIDA dataset provides a wealth of data, the
lack of payload presents the problem of determining whetetrafic is true SSH tréic.
Crude statistical analysis determines that some of thesestiare most likely not human
interaction. Indeed, an ideal dataset is actual traces &®®SH server. A honeypot or
captured tréic from an exercise may be beneficial to record timestampsfosedhuman

interactive sessions.

5.3.2 Algorithm ImprovementsThis algorithm relies on single bit parity to detect
a bad watermark after finding the synchronization frameotttetection and correction
techniques such as Forward Error Correction (FEC) may enhhrscalgorithm to correct
identified errors. The analysis shows that single bit eraoesthe most common. A single
bit correction may drastically improve results, espegiailnoisy environments.

Another improvement relates to the watermark statisticudation. If a

synchronization frame is correct, this algorithm does dtwate the existence of the
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synchronization in the next two frames. In order to provideae statistically correct
calculation of the watermark presence, the algorithm shietatively calculate the
number of synchronization frames across the entire str@ais.increases the number of
calculations performed and most likely results in perfano®aloss; however, it reduces
the likelihood of the circumstance around data point 99regfeed in Section 4.5.3 from

occurring.

5.3.3 Stepping Stone Geo-locatiorAs shown in the analysis, the experiments
demonstrate a statisticalffBrence in the watermark statistic between th#edent servers.
The additional goal of geo-locating the source may be &sklsy the use of a watermark.
In this case, the detector may be used to determine not oalwédtermark is present, but
estimating the traversed path. Future work using watersnauky assist the geo-location

of the client origin using only the synchronization frames.

5.3.4 In-Line Usage. The most dificult task of using the detector against stepping
stones is the ability to perform the watermarking on liveadad it occurs. This may be
conducted either at the kernel level on the host device orbgldping an in-line
watermarker that marks the packets as they traverse a iet@onection. In either case,
the system currently needs tofter at least 16 packets before it can apply the algorithm
and send the packets. It may be entirely possible in thedutuonly budter between two
to four packets and use this information on the followingkeds, but there always exists a
small number of packets to create the necessary inter-pdekays according to the'
vector. Future analysis may reduce the amount of packetiedan the befer, although
this delay may be one of the easiest ways for the attackeettifgt the presence of a

watermarking device.
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5.4 Concluding Remarks

This research demonstrates a novel semi-blind active mairéing method of
detecting stepping stones. The algorithm encodes the mvatkron the first level detalil
vectord! DWT of the inter-packet delays. While other systems may parfoetter in
terms of FP and FN rates, the invisibility and scalabilitig iechnique ffers presents a

unique advantage over similar active watermarking tearesq
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Appendix A: Client and Server Development

The development of the client and server reveal many chgdienegarding the
design of a live watermarker. The issues documented hewvidera basis for others
developing similar or future systems that require similarctions. While some of these
problems are platform dependent, many of the lessonsraiiest here serve as a starting

point to a full scale live watermarker.

A.1 Client Development

The client development changed courses based on a few abises/during the
experiment. The problems included socket streams issa@smission delays and low
level TCP programming development. The final client resothede issues in a way
suitable for experimentation and analysis, but not for afied product. To design a
product that is capable of manipulating the packet timingsds more féort and
expansion. This client only served to communicate with tb&€ighed server and send TCP
packets at precise time intervals.

Initially, the client used Python Socket library to genertite packets at specified
time intervals. The Python socket library is robust at heagdl CP sockets and provides a
very simple means to send the packets from a source to distinelowever, with the
simplicity came problems as well. Because the socket is arstgiented protocol, the
simple client packetized the data intended for separate BCRets. Using the server to
record the timestamps did not reveal the problem becausether diferentiates between
the packets by a sequence sent at the end of each packet. Whdervver showed the
timestamps correctly, the wireshark analysis criticahi éxperiment showed that the
client packetization reduced the total number of packetadoynuch as 20%. Because the
client repacketized small packets sent at high rates, iptiuiet data was larger, it may

not be able to repacketize the data and force the client @ thenpacket individually.

74



Using packet sizes of approximately 1050-1100 bytes of TGHbopd successfully forced
the client to send each packet individually and preventa@dimepacketization. This
introduced the problem of transmission delay. Because eadkepis now larger, it takes
more time to actually transmit the message on the physicdiume Depending on the
host network speed, the observed transmission delay rdrgadL00 to 200 msec.
Because of this delay, the only way to reproduce the necepsaket timings was to add
this transmission delay to the original delay for each packieis technique may be later
used in a store-and-forward type of implementation but vaghe original intent for the
experiment.

The final client uses the Python Scapy module to generateransitit packets at the
link layer. The previous program correctly reads the delag$ and sends the packets,
but the scapy module allows for fine control over the intebetiveen individual packets.
Using scapy, the client first generates a three way handstesdessary for TCP and
continues to send data at specified time intervals directtiie network interface.
Because this experiment is not concerned with the receipieo$erver echo replies, this
was removed from the server. This simplified the client beedabe TCP sequence
numbers only needed to be controlled from the sender. Ukisghew implementation,
the client now sends the data at prescribed intervals arslmmteexhibit the packetization
problems described earlier. The sender needs to have amadticommand to prevent
the kernel from closing the TCP connection. Because the kexmelt actually initiating
the connection, when the low level packets are sent outgivessends an
acknowledgement of each packet. When the kernel sees thevaeklyement, it will
send a reset to close the connection because the kerneltdidtrate it. The following
command prevents a TCP reset command from leaving the cikinbugh the kernel still

attempts to send the packet:

sudo iptables -A OUTPUT -p tcp --tcp-flags RST, RST
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--destination-port 5000 -j DROP

Using scapy to send the packets, the wireshark analysissstiawthe client is
sending each individual packet correctly and the servds@sraceiving each individual

TCP packet separately.

A.2 Server Development

The server responsible for collecting the timestamps nexklave the capability to
service multiple connections in a timely manner. The seslo&s not necessarily need to
reply to the client, but does need to acknowledge the paelsetisey arrive and create new
sockets to discern theftierent connections. The Twisted Python module creates gn eas
manner in which this can be done in a multi-threaded fasldaptimize performance.
Each connection generates a new thread handled by the.Begause the intermediate
clients change the original TCP socket from the client, theeeeneed for the server to
parse the data from the client to determine whether a wat&risiaent in the experiment.
In this experiment, the Twisted server searches the TCP adynd records the
connection and watermark to a file for later use. For unmadegd, the client sends 9999
9999 as the watermark denoting that there is none present.

Although the original client records the timestamps as pttthte Python program,
this feature does not accurately measure the timestampsyaaitrive to the server.
Instead, tcpdump is run in a separate process in order taresibie tréfic as it flows to
the server. This creates the scenario in which the detecgra placed external to the

server and the dumped ffi@ may be analyzed using an external resource.

A.3 Intermediate Clients

The intermediate clients need to pass the data from onerderilee next in order to

facilitate the daisy-chain operation of the stepping stohatially, the netcat program
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seemed to be an acceptable solution as a simple network €@eerving the packet
timestamps from the server showed that the packets wevenaret the expected times,
but the wireshark timing showed otherwise. The main proldsraeen previously is the
treatment of TCP packets versus sockets. In some cased, \wetdd packetize the
smaller packets based on the TCP stream in to a larger paciat vesults in the loss of
the timestamp at the network packet layer.

The next solution focused on socat. This is a powerful tophtée of relaying
packets at many layers, including UNIX sockets. The follmpwcommand relays the TCP

packets and did not show any packetization problems evigdeah using netcat:

sudo nohup socat TCP-LISTEN:5000,nodelay, fork

TCP:next_relay_server:5000,nodelay

The only issue that socat showed is the duplication of the Tatirce port. Socat
appears to use port 33800 as the initial source port in the T@Brmissions. Because of
this, each time the intermediate server immediately priegatie destination restarted, the
TCP source port restarted to 33800. This introduces probiethg analyzer because the
timestamps are based on the streams that are identified biedtuple of source IP,
source port, destination IP and destination port. Secti@afso mentions that this

problem is overcome by embedding the watermark informatiaghe TCP payload.
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Appendix B: Removed Samples

B.1 Non-Random Samples

The decision to remove samples is purely a subjective oredbas the fact that there
is no information regarding the data payload to determinetiér the tréic is true SSH
traffic. Other ports may conceal ffi@ on port 22, as well as SCP regularly copies files on
this port. This anomalous ftiizc removal is a manual process.

Most of the samples are removed based on two factors. Fiesty of the samples do
not appear random and appear more likficagenerators that have constant time
differentials. Examples of this ffac may include VoIP triic, periodic maintenance and
probing trdfic such as Simple Network Monitoring Protocol (SNMP). The rfegubelow

represent the 180 streams removed for these reasons.
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